organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrahydropyrimidin-2-ylideneammonium camphor-10-sulfonate

William T. A. Harrison

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

Received 6 September 2007; accepted 11 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.097; data-to-parameter ratio = 14.0.

In the title molecular salt (alternative name: tetrahydropyrimidin-2-ylideneammonium 2-oxobornane-10-sulfonate), $C_4H_{10}N_3^+$ · $C_{10}H_{15}O_4S^-$, the cation and anion interact by way of $N-H\cdots O$ hydrogen bonds, leading to chains propagating in the polar [010] direction containing $R_2^2(8)$ supramolecular loops.

Related literature

For background, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data

$C_4H_{10}N_3^+ \cdot C_{10}H_{15}O_4S^-$	$V = 868.46 (9) \text{ Å}^3$
$M_r = 331.43$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 7.4207 (4) Å	$\mu = 0.21 \text{ mm}^{-1}$
b = 7.3115 (4) Å	T = 293 (2) K
c = 16.421 (1) Å	$0.32 \times 0.26 \times 0.17 \text{ mm}$
$\beta = 102.899 \ (1)^{\circ}$	

Data collection

```
Bruker SMART 1000 CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 1999)
  T_{\rm min} = 0.860, \ T_{\rm max} = 0.967
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	
$wR(F^2) = 0.097$	
S = 1.09	
3003 reflections	
214 parameters	
1 restraint	

5301 measured reflections 3003 independent reflections 2630 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.017$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1$ $N1-H2\cdotsO2^{i}$ $N2-H3\cdotsO3$ $N3-H4\cdotsO3^{i}$	0.98 (5) 0.77 (5) 0.78 (4) 0.81 (4)	1.90 (5) 2.12 (5) 2.13 (4) 2.11 (4)	2.873 (5) 2.888 (5) 2.900 (4) 2.908 (4)	173 (4) 178 (6) 169 (3) 165 (3)

Symmetry code: (i) x, y + 1, z.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

The author thanks M. R. St J. Foreman and M. John Plater for supplying the sample.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2027).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, 04058 [doi:10.1107/S160053680704442X]

Tetrahydropyrimidin-2-ylideneammonium camphor-10-sulfonate

W. T. A. Harrison

Comment

The title compound, (I), is a molecular salt (Fig. 1). The C—N bond lengths in the cation [C11—N2 = 1.319 (5) Å, C11—N1 = 1.330 (3) Å, C11—N3 = 1.332 (5) Å] indicate delocalization of the electrons in the nominal C—N single bonds and C=N⁺ double bond (see scheme) in a similar fashion to that seen in the $CN_3H_6^+$ guanidinium cation. The bond angle sum at C11 is exactly 360°. The conformation of the six-membered ring of the cation is well described as an envelope, with C13 displaced by 0.632 (4) Å from C11/C12/C14/N2/N3 (r.m.s. deviation for these atoms = 0.002 Å). The configurations of the chiral carbon atoms in the camphor sulfonate anion are: C2 *R* and C5 S. Otherwise, (I) displays normal geometrical parameters (Allen *et al.*, 1995).

In the crystal of (I), the components interact by way of N—H···O hydrogen bonds (Table 1) leading to infinite chains propagating in [010], with every cation and anion linked by two N—H···O bonds (Fig. 2), resulting in graph-theory (Bernstein *et al.*, 1995) $R^2_2(8)$ loops.

Experimental

Aqueous solutions of tetrahydro-pyrimidin-2-ylidene-amine and camphor-10-sulfonic acid were mixed in stoichiometric quantities leading to a clear solution. Colourless faceted chunks of (I) grew over a few days as the water slowly evaporated.

Refinement

A *PLATON*/checkcif analysis of (I) indicated pseudosymmetry at the 90% level. However, a centre of symmetry cannot be compatible with the chiral anion.

The N-bound H atoms were located in a difference map and their positions were freely refined with $U_{iso}(H) = 1.2U_{eq}(N)$.

The C-bound H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl C})$. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1. The molecular structure of (I) (40% displacement ellipsoids, arbitrary spheres for the H atoms, hydrogen bonds indicated by double dashed lines).

Fig. 2. Detail of (I) showing an [010] hydrogen-bonded chain containing $R^2_2(8)$ loops. Atoms marked with a * suffix are at the symmetry position (x, y - 1, z).

Tetrahydropyrimidin-2-ylideneammonium 2-oxobornane-10-sulfonate

Crystal data

$C_4H_{10}N_3^+ C_{10}H_{15}O_4S^-$	$F_{000} = 356$
$M_r = 331.43$	$D_{\rm x} = 1.267 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 3004 reflections
a = 7.4207 (4) Å	$\theta = 2.8 - 25.0^{\circ}$
<i>b</i> = 7.3115 (4) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 16.421 (1) Å	T = 293 (2) K
$\beta = 102.899 \ (1)^{\circ}$	Faceted chunk, colourless
$V = 868.46 (9) \text{ Å}^3$	$0.32\times0.26\times0.17~mm$
Z = 2	

Data collection

Bruker SMART 1000 CCD diffractometer	3003 independent reflections
Radiation source: fine-focus sealed tube	2630 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -8 \rightarrow 8$
$T_{\min} = 0.860, \ T_{\max} = 0.967$	$k = -8 \rightarrow 8$
5301 measured reflections	$l = -16 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: difmap and geom
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_0^2) + (0.0532P)^2 + 0.0964P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.097$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
3003 reflections	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
214 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), with 1341 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.17 (9)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5794 (3)	0.3098 (6)	0.20808 (13)	0.0443 (5)
H1A	0.4756	0.2258	0.1970	0.053*
H1B	0.5307	0.4301	0.1904	0.053*
C2	0.7072 (3)	0.2553 (3)	0.15159 (16)	0.0429 (6)
C3	0.6026 (4)	0.2795 (4)	0.06007 (18)	0.0592 (9)
C4	0.7455 (5)	0.2783 (7)	0.00768 (19)	0.0804 (13)
H41	0.7483	0.3941	-0.0209	0.096*
H42	0.7233	0.1802	-0.0331	0.096*
C5	0.9240 (5)	0.2470 (4)	0.07361 (19)	0.0636 (8)
H51	1.0374	0.2795	0.0557	0.062 (8)*
C6	0.9151 (5)	0.0456 (5)	0.1020 (2)	0.0736 (10)
H61	0.8800	-0.0355	0.0543	0.088*
H62	1.0330	0.0063	0.1359	0.088*
C7	0.7654 (5)	0.0506 (4)	0.1535 (2)	0.0567 (7)
H71	0.8148	0.0100	0.2104	0.068*
H72	0.6612	-0.0263	0.1285	0.068*
C8	0.8908 (4)	0.3566 (4)	0.14960 (17)	0.0496 (8)
C9	0.8664 (5)	0.5612 (4)	0.1348 (3)	0.0729 (10)
H91	0.9728	0.6098	0.1181	0.109*
H92	0.8529	0.6199	0.1854	0.109*
H93	0.7581	0.5833	0.0916	0.109*
C10	1.0493 (3)	0.3306 (7)	0.22651 (17)	0.0639 (7)
H101	1.1640	0.3649	0.2130	0.096*
H102	1.0550	0.2046	0.2434	0.096*
H103	1.0280	0.4059	0.2713	0.096*
S1	0.66387 (7)	0.31798 (11)	0.31831 (3)	0.03870 (15)
01	0.7694 (3)	0.4848 (3)	0.33660 (15)	0.0523 (6)
O2	0.7726 (3)	0.1533 (3)	0.34393 (14)	0.0505 (6)
03	0.4966 (2)	0.3208 (4)	0.35201 (10)	0.0505 (4)
O4	0.4382 (3)	0.2951 (6)	0.03598 (13)	0.0893 (8)
C11	0.4246 (3)	0.8182 (6)	0.38435 (16)	0.0498 (5)
C12	0.1889 (5)	0.6527 (5)	0.4365 (2)	0.0538 (9)
H12A	0.2267	0.6427	0.4969	0.065*

supplementary materials

H12B	0.1168	0.5452	0.4156	0.065*
C13	0.0735 (3)	0.8206 (6)	0.41374 (18)	0.0586 (6)
H13A	-0.0258	0.8211	0.4435	0.070*
H13B	0.0185	0.8195	0.3543	0.070*
C14	0.1890 (4)	0.9908 (4)	0.4354 (2)	0.0505 (8)
H14A	0.1171	1.0976	0.4131	0.061*
H14B	0.2262	1.0039	0.4956	0.061*
N1	0.5722 (3)	0.8172 (6)	0.3510(2)	0.0822 (9)
H1	0.629 (6)	0.699 (7)	0.345 (3)	0.099*
H2	0.627 (7)	0.906 (7)	0.350 (3)	0.099*
N2	0.3515 (4)	0.6619 (4)	0.4010 (2)	0.0517 (8)
H3	0.378 (4)	0.570 (5)	0.383 (2)	0.062*
N3	0.3521 (4)	0.9775 (4)	0.4001 (2)	0.0527 (8)
H4	0.408 (5)	1.070 (5)	0.394 (2)	0.063*

Atomic displacement parameters (\AA^2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(7)
C3 0.0616 (17) 0.063 (3) 0.0484 (15) -0.0021 (15) 0.0024 (12) -0.0016 (14) C4 0.093 (2) 0.106 (4) 0.0437 (15) -0.007 (2) 0.0184 (15) -0.0050 (19) C5 0.0656 (18) 0.077 (2) 0.0562 (17) -0.0009 (15) 0.0305 (15) 0.0032 (15) C6 0.095 (3) 0.065 (2) 0.073 (2) 0.012 (2) 0.045 (2) -0.0148 (18) C7 0.0696 (19) 0.0443 (16) 0.0607 (19) -0.0002 (15) 0.0238 (15) -0.0062 (14) C8 0.0461 (13) 0.052 (2) 0.0529 (14) 0.0002 (12) 0.0152 (11) 0.0028 (12) C9 0.080 (2) 0.0486 (19) 0.093 (3) -0.0117 (18) 0.024 (2) 0.0163 (19)	0)
C4 0.093 (2) 0.106 (4) 0.0437 (15) -0.007 (2) 0.0184 (15) -0.0050 (19) C5 0.0656 (18) 0.077 (2) 0.0562 (17) -0.0009 (15) 0.0305 (15) 0.0032 (15) C6 0.095 (3) 0.065 (2) 0.073 (2) 0.012 (2) 0.045 (2) -0.0148 (18) C7 0.0696 (19) 0.0443 (16) 0.0607 (19) -0.0002 (15) 0.0238 (15) -0.0062 (14) C8 0.0461 (13) 0.052 (2) 0.0529 (14) 0.0002 (12) 0.0152 (11) 0.0028 (12) C9 0.080 (2) 0.0486 (19) 0.093 (3) -0.0117 (18) 0.024 (2) 0.0163 (19)	(4)
C50.0656 (18)0.077 (2)0.0562 (17)-0.0009 (15)0.0305 (15)0.0032 (15)C60.095 (3)0.065 (2)0.073 (2)0.012 (2)0.045 (2)-0.0148 (18)C70.0696 (19)0.0443 (16)0.0607 (19)-0.0002 (15)0.0238 (15)-0.0062 (14)C80.0461 (13)0.052 (2)0.0529 (14)0.0002 (12)0.0152 (11)0.0028 (12)C90.080 (2)0.0486 (19)0.093 (3)-0.0117 (18)0.024 (2)0.0163 (19)	9)
C60.095 (3)0.065 (2)0.073 (2)0.012 (2)0.045 (2)-0.0148 (18C70.0696 (19)0.0443 (16)0.0607 (19)-0.0002 (15)0.0238 (15)-0.0062 (14C80.0461 (13)0.052 (2)0.0529 (14)0.0002 (12)0.0152 (11)0.0028 (12)C90.080 (2)0.0486 (19)0.093 (3)-0.0117 (18)0.024 (2)0.0163 (19)	;)
C70.0696 (19)0.0443 (16)0.0607 (19)-0.0002 (15)0.0238 (15)-0.0062 (14)C80.0461 (13)0.052 (2)0.0529 (14)0.0002 (12)0.0152 (11)0.0028 (12)C90.080 (2)0.0486 (19)0.093 (3)-0.0117 (18)0.024 (2)0.0163 (19)	8)
C80.0461 (13)0.052 (2)0.0529 (14)0.0002 (12)0.0152 (11)0.0028 (12)C90.080 (2)0.0486 (19)0.093 (3)-0.0117 (18)0.024 (2)0.0163 (19)	4)
C9 0.080 (2) 0.0486 (19) 0.093 (3) -0.0117 (18) 0.024 (2) 0.0163 (19)	!)
	り
C10 0.0382 (12) 0.089 (2) 0.0655 (16) 0.007 (2) 0.0128 (11) 0.001 (2)	
S1 0.0374 (3) 0.0358 (3) 0.0450 (3) 0.0025 (4) 0.0135 (2) -0.0019 (4)	ł)
O1 0.0490 (14) 0.0429 (12) 0.0678 (16) -0.0062 (11) 0.0189 (11) -0.0168 (11)	1)
O2 0.0507 (14) 0.0494 (13) 0.0523 (13) 0.0151 (11) 0.0134 (11) 0.0076 (10)))
O3 0.0512 (8) 0.0438 (8) 0.0642 (10) 0.0014 (14) 0.0293 (7) -0.0024 (13	3)
O4 0.0631 (12) 0.134 (2) 0.0595 (12) -0.004 (2) -0.0109 (10) -0.0016 (19)	9)
C11 0.0422 (11) 0.0410 (11) 0.0669 (14) -0.003 (2) 0.0134 (10) -0.004 (2)	1
C12 0.054 (2) 0.053 (2) 0.057 (2) -0.0091 (17) 0.0194 (17) -0.0034 (17)	7)
C13 0.0465 (12) 0.0590 (15) 0.0738 (16) 0.000 (2) 0.0210 (11) -0.002 (2)	r -
C14 0.047 (2) 0.045 (2) 0.060 (2) 0.0069 (15) 0.0136 (16) -0.0022 (16	6)
N1 0.0653 (14) 0.0459 (13) 0.153 (3) -0.001 (2) 0.0619 (16) -0.001 (3)	r -
N2 0.0480 (18) 0.0379 (17) 0.072 (2) 0.0020 (14) 0.0194 (15) -0.0073 (14	4)
N3 0.051 (2) 0.0336 (16) 0.078 (2) 0.0030 (14) 0.0253 (16) -0.0037 (14	4)

Geometric parameters (Å, °)

C1—C2	1.520 (3)	С9—Н93	0.9600
C1—S1	1.779 (2)	C10—H101	0.9600
C1—H1A	0.9700	C10—H102	0.9600
C1—H1B	0.9700	С10—Н103	0.9600
C2—C3	1.540 (4)	S1—O1	1.444 (2)
C2—C7	1.556 (4)	S1—O2	1.458 (2)

C2—C8	1.558 (3)	S1—O3	1.4678 (14)
C3—O4	1.201 (3)	C11—N2	1.319 (5)
C3—C4	1.507 (4)	C11—N1	1.330 (3)
C4—C5	1.529 (5)	C11—N3	1.332 (5)
C4—H41	0.9700	C12—N2	1.454 (4)
C4—H42	0.9700	C12—C13	1.496 (5)
C5—C8	1.548 (4)	C12—H12A	0.9700
C5—C6	1.550 (5)	C12—H12B	0.9700
С5—Н51	0.9800	C13—C14	1.508 (5)
C6—C7	1.540 (4)	C13—H13A	0.9700
С6—Н61	0.9700	C13—H13B	0.9700
С6—Н62	0.9700	C14—N3	1.458 (4)
С7—Н71	0.9700	C14—H14A	0.9700
С7—Н72	0.9700	C14—H14B	0.9700
C8—C9	1.520 (4)	N1—H1	0.98 (5)
C8—C10	1.533 (4)	N1—H2	0.77 (5)
С9—Н91	0.9600	N2—H3	0.78 (4)
C9—H92	0.9600	N3—H4	0.81 (4)
$C_2 = C_1 = S_1$	120 23 (15)	$H_{01} = C_0 = H_{02}$	109.5
$C_2 = C_1 = S_1$	107.2	$1191 - C_{2} - 1192$	109.5
S1 C1 H1A	107.3	$H_{01} = C_{0} = H_{02}$	109.5
SI = CI = HIR	107.3		109.5
C2	107.3	$H_{92} - C_{9} - H_{93}$	109.5
	107.3	$C_8 = C_{10} = H_{101}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.9	C8-C10-H102	109.5
C1 = C2 = C3	108.0(2)	H101 - C10 - H102	109.5
$C_1 = C_2 = C_7$	110.0(2)		109.5
$C_{3} = C_{2} = C_{7}$	102.0(2)		109.5
$C_1 = C_2 = C_8$	123.8(2)	n102—C10—n103	109.5
$C_{3} = C_{2} = C_{8}$	100.2(2)	01 = 51 = 02	113.46 (10)
$C_{1} = C_{2} = C_{8}$	102.0(2)	01 - 51 - 03	112.00(13)
04 - 03 - 04	127.2(3)	02 - 51 - 03	111.28(14)
$C_4 = C_2 = C_2$	123.9(3)	$O_1 = S_1 = C_1$	100.94 (10)
$C_4 - C_3 - C_2$	106.9 (2)	02-S1-C1	108.20 (15)
$C_3 = C_4 = C_5$	101.8 (2)		104.38 (10)
C_{3} — C_{4} — H_{41}	111.4	N2_C11_N1	119.7 (4)
$C_{3} = C_{4} = H_{41}$	111.4	N2-C11-N3	120.9 (2)
C3—C4—H42	111.4	NI-CII-N3	119.4 (4)
C5—C4—H42	111.4	N2-C12-C13	110.0 (3)
H41	109.3	N2-C12-H12A	109.7
C4 - C5 - C8	103.0 (3)	C13C12H12A	109.7
C4 - C5 - C6	105.5 (3)	N2-C12-H12B	109.7
C8 - C5 - C6	103.0 (2)	C13—C12—H12B	109.7
C4—C5—H51	114.7	H12A—C12—H12B	108.2
C8—C5—H51	114./	C12—C13—C14	110.76 (19)
Co-Co-H51	114./	C12—C13—H13A	109.5
$C_{1} = C_{0} = C_{0}$	103.1 (2)	C12 C12 H12D	109.5
C = C = H C	111.1	С12—С13—Н13В	109.5
U5-U6-H61	111.1	C14—C13—H13B	109.5
С/—С6—Н62	111.1	нтзА—Стз—НтзВ	108.1

supplementary materials

С5—С6—Н62	111.1	N3-C14-C13	109.3 (2)
H61—C6—H62	109.1	N3—C14—H14A	109.8
C6—C7—C2	104.0 (2)	C13—C14—H14A	109.8
С6—С7—Н71	111.0	N3—C14—H14B	109.8
С2—С7—Н71	111.0	C13—C14—H14B	109.8
С6—С7—Н72	111.0	H14A—C14—H14B	108.3
С2—С7—Н72	111.0	C11—N1—H1	118 (3)
H71—C7—H72	109.0	C11—N1—H2	120 (4)
C9—C8—C10	107.2 (3)	H1—N1—H2	120 (3)
C9—C8—C5	114.6 (3)	C11—N2—C12	122.7 (3)
C10—C8—C5	111.6 (3)	C11—N2—H3	121 (3)
C9—C8—C2	113.4 (2)	C12—N2—H3	114 (3)
C10-C8-C2	115.9 (2)	C11—N3—C14	122.9 (3)
C5—C8—C2	93.9 (2)	C11—N3—H4	118 (3)
С8—С9—Н91	109.5	C14—N3—H4	119 (3)
С8—С9—Н92	109.5		
S1—C1—C2—C3	-174.3 (2)	C4—C5—C8—C2	55.4 (3)
S1—C1—C2—C7	71.4 (3)	C6—C5—C8—C2	-54.1 (3)
S1—C1—C2—C8	-57.5 (4)	C1—C2—C8—C9	-53.8 (3)
C1—C2—C3—O4	-16.5 (5)	C3—C2—C8—C9	66.8 (3)
C7—C2—C3—O4	107.2 (4)	C7—C2—C8—C9	171.7 (3)
C8—C2—C3—O4	-147.5 (4)	C1—C2—C8—C10	70.9 (3)
C1—C2—C3—C4	163.9 (3)	C3—C2—C8—C10	-168.5 (3)
C7—C2—C3—C4	-72.5 (3)	C7—C2—C8—C10	-63.6 (3)
C8—C2—C3—C4	32.8 (3)	C1—C2—C8—C5	-172.8 (2)
O4—C3—C4—C5	-177.9 (4)	C3—C2—C8—C5	-52.1 (2)
C2—C3—C4—C5	1.8 (4)	C7—C2—C8—C5	52.7 (2)
C3—C4—C5—C8	-36.4 (3)	C2-C1-S1-O1	77.3 (3)
C3—C4—C5—C6	71.2 (3)	C2-C1-S1-O2	-45.2 (3)
C4—C5—C6—C7	-71.9 (3)	C2—C1—S1—O3	-163.9 (3)
C8—C5—C6—C7	35.8 (3)	N2-C12-C13-C14	-51.8 (3)
C5—C6—C7—C2	-1.5 (3)	C12-C13-C14-N3	51.3 (3)
C1—C2—C7—C6	-171.4 (2)	N1-C11-N2-C12	-179.2 (3)
C3—C2—C7—C6	70.6 (3)	N3—C11—N2—C12	0.4 (4)
C8—C2—C7—C6	-32.9 (3)	C13—C12—N2—C11	26.5 (4)
C4—C5—C8—C9	-62.6 (3)	N2-C11-N3-C14	-0.6 (4)
C6—C5—C8—C9	-172.1 (3)	N1-C11-N3-C14	179.0 (3)
C4—C5—C8—C10	175.3 (3)	C13—C14—N3—C11	-25.8 (4)
C6—C5—C8—C10	65.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H1…O1	0.98 (5)	1.90 (5)	2.873 (5)	173 (4)
N1—H2···O2 ⁱ	0.77 (5)	2.12 (5)	2.888 (5)	178 (6)
N2—H3…O3	0.78 (4)	2.13 (4)	2.900 (4)	169 (3)
N3—H4···O3 ⁱ	0.81 (4)	2.11 (4)	2.908 (4)	165 (3)
Symmetry codes: (i) $x, y+1, z$.				

Fig. 2

